Jobs

Data Structures: An Active Learning Approach

  • Job DurationedX
  • Job Duration10 weeks long, 6-7 hours a week
  • Job DurationFree Online Course (Audit)

Project detail


Overview

This interactive text used in this course was written with the intention of teaching Computer Science students about various data structures as well as the applications in which each data structure would be appropriate to use. It is currently being taught at the University of California, San Diego (UCSD), the University of San Diego (USD), and the University of Puerto Rico (UPR).
 
This coursework utilizes the Active Learning approach to instruction, meaning it has various activities embedded throughout to help stimulate your learning and improve your understanding of the materials we will cover. You will encounter «STOP and Think» questions that will help you reflect on the material, «Exercise Breaks» that will test your knowledge and understanding of the concepts discussed, and «Code Challenges» that will allow you to actually implement some of the algorithms we will cover.
 
Currently, all code challenges are in C++ or Python, but the vast majority of the content is language-agnostic theory of complexity and algorithm analysis. In other words, even without C++ or Python knowledge, the key takeaways can still be obtained.

Syllabus

Module 1: Introduction and Review

  • 1.1 Welcome to Data Structures!
  • 1.2 Tick Tock, Tick Tock
  • 1.3 Classes of Computational Complexity
  • 1.4 The Fuss of C++
  • 1.5 Random Numbers
  • 1.6 Bit-by-Bit
  • 1.7 The Terminal-ator
  • 1.8 Git: the «Undo» Button of Software Development

Module 2: Introductory Data Structures

  • 2.1 Array Lists
  • 2.2 Linked Lists
  • 2.3 Skip Lists
  • 2.4 Circular Arrays
  • 2.5 Abstract Data Types
  • 2.6 Deques
  • 2.7 Queues
  • 2.8 Stacks
  • 2.9 And the Iterators Gonna Iterate-ate-ate

Module 3: Tree Structures

  • 3.1 Lost in a Forest of Trees
  • 3.2 Heaps
  • 3.3 Binary Search Trees
  • 3.4 BST Average-Case Time Complexity
  • 3.5 Randomized Search Trees
  • 3.6 AVL Trees
  • 3.7 Red-Black Trees
  • 3.8 B- Trees
  • 3.9 B+ Trees

Module 4: Introduction to Graphs

  • 4.1 Introduction to Graphs
  • 4.2 Graph Representations
  • 4.3 Algorithms on Graphs: Breadth-First Search
  • 4.4 Algorithms on Graphs: Depth-First Search
  • 4.5 Dijkstra’s Algorithm
  • 4.6 Minimum Spanning Trees: Prim’s and Kruskal’s Algorithms
  • 4.7 Disjoint Sets

Module 5: Hashing

  • 5.1 The Unquenched Need for Speed
  • 5.2 Hash Functions
  • 5.3 Introduction to Hash Tables
  • 5.4 Probability of Collisions
  • 5.5 Collision Resolution: Open Addressing
  • 5.6 Collision Resolution: Closed Addressing (Separate Chaining)
  • 5.7 Collision Resolution: Cuckoo Hashing
  • 5.8 Hash Maps

Module 6: Implementing a Lexicon

  • 6.1 Creating a Lexicon
  • 6.2 Using Linked Lists
  • 6.3 Using Arrays
  • 6.4 Using Binary Search Trees
  • 6.5 Using Hash Tables and Hash Maps
  • 6.6 Using Multiway Tries
  • 6.7 Using Ternary Search Trees

Module 7: Coding and Information Compression

  • 7.1 Return of the (Coding) Trees
  • 7.2 Entropy and Information Theory
  • 7.3 Honey, I Shrunk the File
  • 7.4 Bitwise I/O

Module 8: Conclusions

  • 8.1 Summaries of Data Structures

Languages required